Amino acid substitutions in the Candida albicans sterol Δ5,6-desaturase (Erg3p) confer azole resistance: characterization of two novel mutants with impaired virulence.

نویسندگان

  • Florent Morio
  • Fabrice Pagniez
  • Claire Lacroix
  • Michel Miegeville
  • Patrice Le Pape
چکیده

OBJECTIVES To determine the mechanisms responsible for fluconazole resistance in two Candida albicans isolates (CAAL2 and CAAL76) recovered from two hospitalized patients after fluconazole prophylaxis. METHODS MICs of fluconazole and voriconazole were determined by the broth microdilution method (CLSI M27-A3), and by Etest(®) for amphotericin B. RNA expression levels of CDR1, MDR1 and ERG11 were determined by RT-PCR. Mutations in ERG11 and ERG3 were investigated by amplification and sequencing. Sterol membrane profiles were determined by gas chromatography-mass spectrometry (GC-MS). In vivo virulence was determined in a murine model of invasive candidiasis. RESULTS Both isolates displayed azole cross-resistance and reduced susceptibility to amphotericin B, and are novel Δ(5,6)-desaturase (Erg3p) mutants. CAAL2 harbours a new amino acid substitution (L193R), whereas a 13 bp deletion leading to a truncated Erg3p (Δ366-378) was found in CAAL76. Both genetic alterations impaired Erg3p function as shown by GC-MS in these isolates (ergosterol content below 10%, and accumulation of ergosta-7,22-dienol above 40%). In vivo, in a murine model of invasive candidiasis, both CAAL2 and CAAL76 exhibited a significant trend toward reduced virulence, which seems to be linked to a reduced capacity for hyphal growth. CONCLUSIONS These findings demonstrate the critical role of residue 193 in Erg3p function and azole resistance. We suggest that this attenuated in vivo virulence phenotype could be linked to lower potential for hyphal growth. Taken together, our findings highlight the fact that erg3 mutants must be considered in future studies aiming at investigating azole antifungal drug resistance.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Identification and characterization of four azole-resistant erg3 mutants of Candida albicans.

Sterol analysis identified four Candida albicans erg3 mutants in which ergosta 7,22-dienol, indicative of perturbations in sterol Δ(5,6)-desaturase (Erg3p) activity, comprised >5% of the total sterol fraction. The erg3 mutants (CA12, CA488, CA490, and CA1008) were all resistant to fluconazole, voriconazole, itraconazole, ketoconazole, and clotrimazole under standard CLSI assay conditions (MIC v...

متن کامل

Inactivation of Sterol -Desaturase Attenuates Virulence in Candida albicans

Two clinical Candida albicans isolates that exhibited high-level resistance to azoles and modest decreases in susceptibility to amphotericin B were cultured from unrelated patients. Both isolates harbored homozygous nonsense mutations in ERG3, which encodes an enzyme, sterol -desaturase, involved in ergosterol synthesis. Extraction and analysis of the sterols from both isolates confirmed the ab...

متن کامل

Amino Acid Substitutions at the Major Insertion Loop of Candida albicans Sterol 14alpha-Demethylase Are Involved in Fluconazole Resistance

BACKGROUND In the fungal pathogen Candida albicans, amino acid substitutions of 14alpha-demethylase (CaErg11p, CaCYP51) are associated with azole antifungals resistance. This is an area of research which is very dynamic, since the stakes concern the screening of new antifungals which circumvent resistance. The impact of amino acid substitutions on azole interaction has been postulated by homolo...

متن کامل

A clinical isolate of Candida albicans with mutations in ERG11 (encoding sterol 14alpha-demethylase) and ERG5 (encoding C22 desaturase) is cross resistant to azoles and amphotericin B.

A clinical isolate of Candida albicans was identified as an erg5 (encoding sterol C22 desaturase) mutant in which ergosterol was not detectable and ergosta 5,7-dienol comprised >80% of the total sterol fraction. The mutant isolate (CA108) was resistant to fluconazole, voriconazole, itraconazole, ketoconazole, and clotrimazole (MIC values, 64, 8, 2, 1, and 2 microg ml(-1), respectively); azole r...

متن کامل

Nucleotide substitutions in the Candida albicans ERG11 gene of azole-susceptible and azole-resistant clinical isolates.

One of the mechanisms of Candida albicans resistance to azole drugs used in antifungal therapy relies on increased expression and presence of point mutations in the ERG11 gene that encodes sterol 14α demethylase (14DM), an enzyme which is the primary target for the azole class of antifungals. The aim of the study was to analyze nucleotide substitutions in the Candida albicans ERG11 gene of azol...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of antimicrobial chemotherapy

دوره 67 9  شماره 

صفحات  -

تاریخ انتشار 2012